The cloning of a Caenorhabditis elegans guanylyl cyclase and the construction of a ligand-sensitive mammalian/nematode chimeric receptor.
نویسندگان
چکیده
Substantial guanylyl cyclase activity was detected in membrane fractions prepared from Caenorhabditis elegans (100 pmol cGMP/min/mg at 20 degrees C or 500 pmol cGMP/min/mg at 37 degrees C), suggesting the potential existence of orphan cyclase receptors in the nematode. Using degenerate primers, a cDNA clone encoding a putative membrane form of the enzyme (GCY-X1) was obtained. The apparent cyclase was most closely related to the mammalian natriuretic peptide receptor family, and retained cysteine residues conserved within the extracellular domain of the mammalian receptors. Expression of the cDNA in COS-7 cells resulted in low, but detectable guanylyl cyclase activity (about 2-fold above vector alone). The extracellular and protein kinase homology domain of the mammalian receptor (GC-B) for C-type natriuretic peptide (CNP) was fused to the catalytic domain of GCY-X1 and expressed in COS-7 cells to determine whether ligand-dependent regulation would now be obtained. The resulting chimeric protein (GC-BX1) was active, and CNP elevated cGMP in a concentration-dependent manner. Subsequently, a search of the genome data base demonstrated the existence of at least 29 different genes from C. elegans that align closely with the catalytic domain of GCY-X1, and thus an equally large number of different regulatory ligands may exist.
منابع مشابه
The Receptor-Bound Guanylyl Cyclase DAF-11 Is the Mediator of Hydrogen Peroxide-Induced Cgmp Increase in Caenorhabditis elegans
Adenosine 3', 5'-cyclic monophosphate (cAMP) and guanosine 3', 5'-cyclic monophosphate (cGMP) are well-studied second messengers that transmit extracellular signals into mammalian cells, with conserved functions in various other species such as Caenorhabditis elegans (C. elegans). cAMP is generated by adenylyl cyclases, and cGMP is generated by guanylyl cyclases, respectively. Studies using C. ...
متن کاملReceptor Guanylyl Cyclases in Sensory Processing
Invertebrate models have generated many new insights into transmembrane signaling by cell-surface receptors. This review focuses on receptor guanylyl cyclases (rGCs) and describes recent advances in understanding their roles in sensory processing in the nematode, Caenorhabditis elegans. A complete analysis of the C. elegans genome elucidated 27 rGCs, an unusually large number compared with mamm...
متن کاملSearching for neuronal left/right asymmetry: genomewide analysis of nematode receptor-type guanylyl cyclases.
Functional left/right asymmetry ("laterality") is a fundamental feature of many nervous systems, but only very few molecular correlates to functional laterality are known. At least two classes of chemosensory neurons in the nematode Caenorhabditis elegans are functionally lateralized. The gustatory neurons ASE left (ASEL) and ASE right (ASER) are two bilaterally symmetric neurons that sense dis...
متن کاملSynergism between soluble guanylate cyclase signaling and neuropeptides extends lifespan in the nematode Caenorhabditis elegans
Oxygen (O2 ) homeostasis is important for all aerobic animals. However, the manner by which O2 sensing and homeostasis contribute to lifespan regulation is poorly understood. Here, we use the nematode Caenorhabditis elegans to address this question. We demonstrate that a loss-of-function mutation in the neuropeptide receptor gene npr-1 and a deletion mutation in the atypical soluble guanylate c...
متن کاملEnvironmental Alkalinity Sensing Mediated by the Transmembrane Guanylyl Cyclase GCY-14 in C. elegans
Survival requires that living organisms continuously monitor environmental and tissue pH. Animals sense acidic pH using ion channels and G-protein-coupled receptors (GPCRs), but monitoring of alkaline pH is not well understood. We report here that in the nematode Caenorhabditis elegans, a transmembrane receptor-type guanylyl cyclase (RGC), GCY-14, of the ASEL gustatory neuron, plays an essentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 272 25 شماره
صفحات -
تاریخ انتشار 1997